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Abstract. The role of the geometric fluctuations on the multifractal properties of the local magnetization
of aperiodic ferromagnetic Ising models on hierarchical lattices is investigated. The geometric fluctuations
are introduced by generalized Fibonacci sequences. The local magnetization is evaluated via an exact
recurrent procedure encompassing real space renormalization group decimation. The symmetries of the
local magnetization patterns induced by the aperiodic couplings is found to be strongly (weakly) different,
with respect to the ones of the corresponding homogeneous systems, when the geometric fluctuations are
relevant (irrelevant) to change the critical properties of the system. At the criticality, the measure defined
by the local magnetization is found to exhibit a non-trivial F (α) spectra being shifted to higher values of
α when relevant geometric fluctuations are considered. The critical exponents are found to be related with
some special points of the F (α) function and agree with previous results obtained by the quite distinct
transfer matrix approach.

PACS. 05.50.+q Lattice theory and statistics – 61.44.Fw Incommensurate crystals –
64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions

1 Introduction

The introduction of deterministic aperiodicity in the cou-
plings and fields has been intensively used to mimic of
the effect of disorder on physical homogeneous systems.
This approach, opposed to the more conventional random
disorder distribution of coupling constants and fields, has
been first used in the analysis of electronic systems, and
is now being used to investigate the critical behavior of
magnetic systems [1].

In recent publications, Luck [2,3] proposed a heuristic
criterion to account whether the geometric fluctuations
in coupling constants and fields are relevant or irrelevant
to alter (or not) the universality class of the aperiodic
systems with respect to the corresponding homogeneous
one. Luck’s criterion plays the similar role of that due
to Harris [4], that holds when quenched disorder is intro-
duced in ferromagnetic systems. In the latter, the critical
behavior is changed provided the critical exponent associ-
ated with the divergence of the specific heat of the corre-
sponding homogeneous system is positive. More recently,
an exact derivation of an analog of the Luck’s criterion for
models defined on hierarchical lattices [5] was presented
for both the Ising [6] and Potts cases [7,8], when the lattice
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is filled with aperiodic interactions dictated by a general-
ized Fibonacci sequence. Using the quite different transfer
matrix (TM) approach, Andrade [9] obtained exact nu-
merical results for the thermodynamic and critical prop-
erties of the aperiodic ferromagnetic Ising model defined
on the same lattices. These results corroborate the change
of universality class of the model when relevant geomet-
ric fluctuations are considered accordingly to the Luck’s
like criterion properly adapted to cope with hierarchical
lattices.

The concept of hierarchical lattices appears [5] after it
has been showed that the family of diamond hierarchical
lattices (hereafter DHL) corresponds to an exact realiz-
able approximation [5,10] of real space Migdal-Kadanoff
renormalization group scheme [11,12]. Since then, it has
been largely used as a framework for analyzing homoge-
neous spin systems [13–15] as well as quenched frustrated
disordered magnetic systems [16–18]. Whenever viewed as
a scheme of real space renormalization approximation it
is well known that they offer only crude approximations
for the critical properties of the corresponding homoge-
neous systems on Euclidean spaces with the same fractal
dimension, but they provide a useful tool to investigate,
via exactly solvable models, the effect of both random and
deterministic disorder, however. We notice that the exact
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scale invariance symmetry is the crucial property of the
DHL’s underlying the methods which link the thermo-
dynamic functions of lattices with successive generations,
as it occurs for the above mentioned real renormalization
group scheme as well as for transfer matrices approach [9].

In this work we are mainly interested to study the role
of geometrical fluctuations on the distribution of the lo-
cal magnetization of ferromagnetic Ising model on the
DHL’s. Geometric randomness on hierarchical lattices was
first considered by McKay et al. [16,17] but focusing on
the chaotic renormalization group trajectories. Recently,
the short range Ising spin glass model defined on the dia-
mond hierarchical lattice has been analyzed by means of a
methodology that encompasses an exact real space renor-
malization group decimation and an exact recursive proce-
dure to calculate the local magnetization of all lattice sites
for a particular realization of the disorder (sample)[19].
A detailed numerical investigation reveals that the mul-
tifractal properties of the local Edwards-Anderson (EA)
order parameter remains non-trivial far below the critical
temperature. This contrasts with previous investigations
of the homogeneous pure ferromagnetic Ising model on the
same lattice, for which the multifractal spectra of the nor-
malized local magnetization survives only at the critical
temperature [20]. Concerning the critical behavior of the
Ising spin glass model, it was possible to obtain strong ev-
idences of universal critical exponents and a unique value
for the temperature of the critical point when several prob-
ability distributions for the quenched coupling constants
are considered [21]. It is worth to mention that the values
of the critical temperature and of the critical exponents
associated to the order parameter and correlation length
for Ising spin glass model on diamond hierarchical lat-
tice with graph fractal dimension dF = 3 are surprisingly
close to those obtained by numerical simulations for the
model defined on Euclidean lattices [22].

Now, we focus our study on two distinct models, both
defined on DHL’s with the same graph fractal dimension
but with distinct topologies leading to relevant and ir-
relevant fluctuations. To deal with the multifractal prop-
erties of the local magnetization we apply the method-
ology developed to study the multifractal spectra of the
order parameter of the homogeneous ferromagnetic Ising
model [20] and the spin-glass Ising model [21] on the
DHL’s. As we will show, the character of the fluctuations
influences the nature of the changes observed in the sin-
gularity spectrum of the local magnetization. To investi-
gate how the singularities of the local magnetization are
distributed we make use of the appropriated multifractal
analysis [23,24].

In Section 2, we describe the model Hamiltonian,
present the sequences governing the aperiodic interactions
and discuss the relevance of the geometric fluctuations
for both lattices, accordingly with the appropriated cri-
terion presented in [6]. We also review the main features
of the flow diagram and the phase diagram of the aperi-
odic systems. Section 3 is devoted to review the method
to obtain the local magnetization and to discuss the mul-
tifractal spectra for special realizations of the geometric
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Fig. 1. Basic unit of the general diamond hierarchical lattice
(b, p)-DHL with p parallel branches each one with b − 1 con-
nected internal sites.

fluctuations. Finally, we discuss and summarize our main
conclusions in Section 4.

2 Model Hamiltonian and aperiodic
interactions

A general hierarchical lattice is constructed according to
a recursive rule where some bonds of basic unit are suc-
cessively replaced by the basic unit itself. The general ba-
sic unit of the diamond hierarchical lattices (b, p) -DHL,
is formed by two roots sites connected by a set of p
parallel branches, each one containing a series of b con-
nected bonds. A given generation is obtained by replac-
ing all bonds of the previous generation by the basic
unit, as sketched in Figure 1. For this family of hierar-
chical lattices, the graph fractal dimension is given by
dF = 1 + log p/ log b, while its size, number of sites and
the number of bonds are respectively given by L = bN ,
NS = (b−1)p[(bp)N −1]/(bp−1) and NB = (bp)N , N be-
ing the number of generations.

The reduced Hamiltonian for the system is

−H/kBT =
∑
〈i,j〉

Kijσiσj , (1)

where σi = ±1 are the Ising variables and the sum
runs over all pairs of nearest neighbors spins 〈i, j〉,
Kij = Jij/kBT are the corresponding coupling constants,
kB is the Boltzmann constant and T is the absolute
temperature.

In this paper, we consider geometric fluctuations in-
troduced by the generalized Fibonacci inflation rule ex-
pressed by

(A, B) → (ABb−1, Ab). (2)

When applied to define the coupling constants of the
hierarchical lattice (Jij = JA; JB), the above rule corre-
sponds to the following procedure: (a) a bond with cou-
pling constant JA, (JA > 0) should be replaced by a ba-
sic unit with p parallel branches each one containing the
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Fig. 2. Basic units of the (a) (2, 2)-DHL and (b) (3, 3)-DHL
indicating the distribution of couplings JA and JB accordingly
with the generalized Fibonacci sequences.

first bond with coupling constant JA and the next (b− 1)
ones with coupling constants JB ; (b) a bond JB, (JB > 0)
should be replaced by a basic unit with all bonds with
coupling constants JA. This correspondence is displayed
in Figures 2a and 2b, for the cases of the lattices with
p = b = 2 and 3, respectively. After N steps, the length of
the aperiodic sequences on which we base the present def-
inition of the geometric fluctuations is given by bN , which
corresponds to the number of bonds within each one of
the shortest paths connecting the two root sites and mea-
sures the size of the lattice. We also notice that there are
pN of such shortest paths, all of them with no common
bonds and showing the same aperiodic sequence. There-
fore the systems can be regarded as formed by identical
layers with the bonds JA and JB arranged accordingly to
the sequence (2). The number of distinct letters or cou-
pling constants within two subsequent generations of the

sequence are related by the substitution matrix M given by

M =
[

1 b
b − 1 0

]
, (3)

whose eigenvalues are λ1 = b and λ2 = (1 − b). The wan-
dering exponent, that measures the fluctuations of the dis-
tribution of elements within the sequence, is defined as

ω =
log |λ2|
log λ1

· (4)

The sequences defined by (2) are said to be non-Pisot
if ω > 0 (b > 2), which means that the fluctuations are
unbounded, whereas the case ω = 0 (b = 2) corresponds to
marginal case. On the other hand, for the Ising model on
DHL with aperiodic interactions arranged by sequences
such that λ1 = b, the geometric fluctuations are said to
be relevant provided

ω > ωc = 1 − 1/ν, (5)

ν being the critical exponent associated with the correla-
tion length of the homogeneous system [6].

In the present work we consider two models: model 1
is defined on a (2, 2)-DHL while model 2 is defined on
a (3, 3)-DHL. The corresponding lattices have been cho-
sen to have the same fractal dimension (dF = 2), but the
geometric fluctuations are respectively irrelevant and rele-
vant respectively accordingly to equation (5), as has been
demonstrated by Pinho et al. [6]. In the rest of this section
we review the basic properties of the renormalization flow
of the model Hamiltonian in these lattices.

Consider a general (b, p)-DHL with the coupling con-
stants defined by the inflation rule given by (2). Within
the real space renormalization group scheme, the decima-
tion procedure is carried on by partial tracing on the spins
introduced in the last generation. This leads to exact scal-
ing relations for the coupling constants JA and JB, given
respectively the following renormalization equations:

t′A = tanh[p tanh−1(tAtb−1
B )] (6)

t′B = tanh[p tanh−1(tbA)]

where tx = tanhKx, x = A or B.
The renormalization flow diagram in the (tA, tB) space

has been carefully studied in [6,8]. The equations (6) have
three fixed point solutions, all of them located along the
manifold tA = tB: t∗∞ = 0, t∗0 = 1, and t∗c . Therefore, they
are also the solutions of the corresponding homogeneous
system. The first two solutions refer to stable fixed points
corresponding to the infinite (paramagnetic) and zero (fer-
romagnetic) temperature phases respectively while the
third one is associated with the critical point governing
the transition of the corresponding homogeneous system.
For the particular models considered here, these critical
point solutions are exact and given by,

t∗c1 =
1
3
(ac − 2/ac − 1) = 0.543689... for p = b = 2 (7)

t∗c2 =
1
2
(
√

5 − 1) = 0.618033... for p = b = 3
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Fig. 3. The flow diagram in the tA×tB space for the real space
renormalized couplings for model 2. The arrows indicate the
flow of the second iterates. F and P denote the stable fixed-
points corresponding to the ferromagnetic and paramagnetic
phases. C labels the fully unstable fixed-point. 4 locates the
two-cycle attractor and � the critical points obtained by the
transfer matrix method. × labels the critical points obtained
by inverting the renormalization equations. A and B give the
frontiers of the basin of attraction within the manifolds tB = 1
and tA = 1 respectively.

where ac = (3
√

33 + 17)
1
3 . As shown in [6], the renormal-

ization flow space has two regions corresponding to the
basins of attraction of the stable fixed points. The frontier
of these regions, containing the critical point of the homo-
geneous system, determines the phase diagram. However,
as pointed out in [6–8], linearization about the non-trivial
fixed point indicates that it is a saddle-point for lattices
with b = 2, (ω = 0 < ωc), while it becomes fully unstable
for lattices with b > 2, (ω > ωc). Therefore, for model 1
the critical behavior should be governed by the fixed-point
of the homogeneous system and the geometric fluctuations
are irrelevant with respect to change the universality class
of the model. On the other hand, for model 2, the non-
trivial fixed point is fully inaccessible indicating that the
geometric fluctuations are indeed relevant to change the
critical behavior. To grasp the critical behavior of the rel-
evant aperiodic model one should explore further the flow
diagram given by equations (6). This was already done
by Haddad et al. [8] investigating the Potts model on the
(3, 2)-DHL. Actually, whenever the fixed-point becomes
fully unstable, they found the appearance of a two-cycle
attractor associated with the novel critical behavior. For
the present model 2, this two-cycle attractor is given by
coordination points (t∗A1 = 0.95116..., t∗B1 = 0.46135...)
and (t∗A2 = 0.54822..., t∗B2 = 0.99915...) [8]. In Figure 3,
we show the (tA, tB) flow diagram for the p = b = 3 case.
Note that the two-cycle attractor is a saddle-point being
unstable towards the trivial stable fixed-points and stable
in the perpendicular direction. The frontier between the
basin of attraction of the stable fixed-points contains both
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Fig. 4. Phase diagram KBT/JA × JB/JA for (a) model 1,
(b) model 2. © (•) indicate numerical (exact) values obtained
with the present methodology, while 4 indicate values obtained
by transfer matrix method. 4 label the exact values for the
homogeneous systems.

the two-cycle attractor and the fully unstable fixed-point.
This frontier intersects the lines tB = 1 and tA = 1 in
two points, respectively A and B, and it manifold is as-
sociated with the critical temperatures of the model for
different choices of the ratio R = JB/JA. The flow di-
agram can be numerically obtained by inverting equa-
tions (6) taking into account that the inverse equations
share the same trivial, non-trivial fixed points and two-
cycle attractor as equations (6), but with inverted unsta-
ble to stable manifolds and vice versa. So, the iterates of
these inverted equations starting close to the critical fixed
point are now pushed towards line ACB, so that a rela-
tion tB = g(tA) can be numerically obtained ending to
the phase diagram. In Figures 4a and 4b, we draw such
relation in the (T/JA, R) phase diagrams of both models,
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Table 1. Exact values for ν, ω and ωc for models 1 and 2.

model 1 model 2

ν 1.338265788... 1.779416044...

ω 0 0.630929753...

ωc 0.252764279... 0.438017880...

indicating the critical temperature obtained for some spe-
cial values of the ratio R by using the TM formalism [9],
as well as the corresponding exact values for the homoge-
neous models (R = 1). The critical exponent ν associated
with the correlation length of the corresponding homoge-
neous systems can be exactly calculated as

ν =
ln b

ln rc
(8)

where

rc =
∣∣∣∣dt′(t)

dt

∣∣∣∣
t=t∗c

=
4bpt∗b

c (1 + t∗b
c )p−1(1 − t∗b

c )p−1

((1 + t∗b
c )p + (1 − t∗b

c )p)2
, (9)

and t′(t) is given by equations (6) when tA = tB = t. In
Table 1, we show the values of ν, ω and ωc for models 1
and 2. It corroborates that for model 2 we have ω > ωc in-
dicating that the geometric fluctuation should be relevant
for this model.

3 The local magnetization

The method of evaluation the local magnetization is based
on the assumption that the model Hamiltonian for a
lattice with N generations is equivalent to a reduced ef-
fective Hamiltonian of a single basic unit introduced in
the Nth step plus effective fields acting on the spins of its
external sites and an effective interaction coupling these
spins. This assumption, which has been proved to be for-
mally correct for the homogeneous system, also holds for
the present model, since no special condition is imposed
to the coupling constants of the Hamiltonian. These un-
known local effective interaction and fields represent the
influence of the remaining lattice spin couplings transmit-
ted by the external spins of that basic unit. The local mag-
netization of both internal and external sites of the basic
unit of the effective system are calculated as a function of
coupling constants (JA and JB) and the unknown effective
coupling and fields. Eliminating the unknown variables we
end up to recursive relations for the local magnetization of
the internal sites in terms of the corresponding values of
the root sites. Now, considering a N generation lattice and
successively decimating the spins up to the first generation
(basic unit) one can recursively calculate the local magne-
tization by choosing appropriated values for the magne-
tization of root sites, accordingly with the configuration
of the phase of the corresponding fixed point. In [20] the
details of the calculations of the recursive equations for
the uniform ferromagnetic case is presented, while in [19]

these equations were generalized for basic unit with arbi-
trary interactions in order to investigate the short range
Ising spin glass model. The recursive equations for the
latter can be straightforwardly applied to deterministic
aperiodic Ising models expressing the site magnetization
of internal sites 〈σ〉 in terms of the corresponding values
for the external sites. The recursive expression for model 1
is given by:

〈σ〉 = A1 〈µ〉 + B1 〈µ′〉 (10)

where

A1 =
tA(1 − tAtB)
(1 − t2At2B)

, (11)

B1 =
tB(1 − tAtB)
(1 − t2At2B)

,

for the (AB) non-homogeneous basic unit while

A1 = B1 =
tA

(1 + t2A)
(12)

for the (A, A)-homogeneous basic unit, as specified in
Figure 2a.

On the other hand, for model 2 we have two sets of re-
cursive equations obtained for each one of the basic units
shown in Figure 2b. Each set has two equations corre-
sponding to the internal sites of each basic unit. For the
non-homogeneous basic unit (ABB) these equations are
given by

〈σi〉 = Ai 〈µ〉 + Bi 〈µ′〉 (i = 1, 2), (13)

where

A1 =
tA(1 − t4B)
(1 − t2At4B)

, (14)

B1 =
t2B(1 − t2A)
(1 − t2At4B)

,

A2 =
tAtB(1 − t4B)
(1 − t2At4B)

,

B2 =
t2B(1 − t2At2B)
(1 − t2At4B)

,

while for the homogeneous basic unit (AAA) they are ex-
pressed by

〈σi〉 = Ci 〈µ〉 + Di 〈µ′〉 (i = 1, 2), (15)

where

C1 = D2 =
tA(1 − t4A)
(1 − t6A)

, (16)

D1 = C2 =
t2A(1 − t2A)
(1 − t6A)

·
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Fig. 5. Magnetization profiles patterns of the model 2 for lattices with N = 10 hierarchies at the criticality. (a) R = 1
homogeneous system; (b) Rc1 = 0.2706... and (c) Rc2 = 6.3104... aperiodic system at the fixed-points of the two-cycle attractor,
respectively. (d) Portion of the Edwards-Anderson order parameter of the Ising spin-glass model on dF = 3 DHL with N = 16,
at criticality, as shown in Figure 3a of reference [19].

To evaluate the correct value of the local magnetiza-
tion mi = 〈σi〉 of each site, it is necessary to keep track
of its local interaction configuration, i.e., to know with
which choice of JA and JB a given inner spin interacts
with its root sites. In order to breakdown the global up-
down symmetry and obtain non-zero values for the spon-
taneous magnetization, it is enough to apply a field on a
given site of the lattice and let this local field equal zero at
the end of calculation. However, assuming boundary con-
ditions to root sites accordingly with the corresponding
configuration of the stable fixed-point phase, the break-
down is also introduced. This latter procedure is followed
in the present work.

Now we focus our attention to model 2 looking over the
effects of the relevant geometric fluctuations with regard
to the homogeneous pure model on the same lattice. First,
we consider the local magnetization of the sites along one
of the shortest paths connecting the root sites. These val-
ues are assigned to points within the interval [0, 1], since
the DHL is a fractal graph where the bonds mean “chemi-

cal distances” without any geometric sense. The resulting
plot gives a representative picture of the local magnetiza-
tion distribution, hereafter called magnetization profile,
since all shortest paths are equivalent as far the DHL
graph symmetry is concerned. Figure 5a shows the mag-
netization profile for the homogeneous model 2 at the crit-
ical temperature of the corresponding saddle-point fixed-
point, and Figures 5b and 5c show the profiles for the
aperiodic model 2 at the critical temperatures of each one
point of the two-cycle attractor for (which correspond to
fluctuation parameter values Rc1 = JB/JA = 0.2706...
and Rc2 = JB/JA = 6.3104.... For the first profile, in
any of the renormalization steps, the coefficients (14,16)
have their values fixed by the corresponding value at the
critical point. For the other two profiles these coefficients
alternate between the corresponding values at the two-
cycle attractor. For values of JA and JB other than those
corresponding to the critical sets, the present methodol-
ogy produces the local magnetization as function of the
temperature, but the above mentioned coefficients evolve
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under the renormalization process. In any case, the mag-
netization of the global root sites are held fixed with initial
values equal to one, which corresponds to the ferromag-
netic configuration.

All profiles shown display many singularities and are,
in some sense, self-similar. However those of the aperiodic
system clearly do not show the same symmetries as the
one from the homogeneous model (R = 1). As pointed
out in [20], for the homogeneous model the pattern sym-
metries are solely related with the topological symmetry
of the lattice, imposed by the distribution of coordina-
tion numbers along the profile. However, for the aperiodic
systems, the self-similar symmetry of the lattice topology
is superimposed by symmetries of the aperiodic sequence
defining the distribution of interactions, so that the re-
sulting pattern expresses the influence of both symme-
tries. We emphasize that this feature does not depend on
the relevant-irrelevant character of the fluctuations, and is
observed also for the aperiodic situation of model 1. It is
worth to comment that for random quenched disorder the
symmetry induced by the lattice topology is completely
washed out as can be seen in Figure 5d for case of the lo-
cal Edwards-Anderson order parameter of the spin-glass
model in dF = 3 DHL [19].

The profiles in Figures 5b and 5c are, at first sight,
rather different, but a close analysis indicates that they
share the same structure. We note also the presence of two
different scales corresponding to the regions where the let-
ters A and B are more abundant. As the values of JA and
JB are rather distinct for the two points of the cycle, they
enhance or depress the values of the local magnetization
in these regions, leading to the two different shapes. It
is important to observe that both profiles were obtained
after eight generations, so that, in the flow diagram, the
trajectories start and end at the same point of the cycle.
If we consider an odd number of generations the form of
the profiles would be reversed, indicating that the profile
does not converge to a single form, but rather oscillates
between two distinct patterns which reflect the properties
of each of the points in the cycle. The same behavior is
observed for every profile, evaluated with any choice of
values for JA and JB , at the corresponding value of Tc.

As this alternating form of the profile pattern results
from the different properties of the two points of the cy-
cle, it is not observed in the case of irrelevant fluctuations.
Indeed, for any value of JA and JB, the trajectory at the
corresponding Tc is controlled by the properties of the
critical point of the homogeneous system: the profile con-
verges to a definite form, with a lower symmetry than in
the case of the homogeneous system.

As previously observed for the homogeneous cases [20],
the high degree of singularities suggests the multifractal
analysis as a valuable tool to investigate the structure of
the magnetization profiles for the models with R 6= 1.
The F (α) functions of the measure defined by the nor-
malized local magnetization µi(L) = mi(L)/

∑
j mj(L)

were calculated by the method due to Chhabra and Jensen
(CJ) [25] which is based on a one parameter family of nor-
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Fig. 6. F (α) spectra of the normalized magnetization hierar-
chies at the criticality. (a) Model 1 for lattices with N = 20
and q ∈ [−60, 60]: ∗ labels the spectrum of the corresponding
homogeneous systems, © the R = 2 aperiodic system and � the
R = 0.5 aperiodic system. (b) Model 2 for lattices with N = 15

and q ∈ [−40, 50]: ∗ labels the spectrum of the corresponding
homogeneous systems, © and � the spectrum of the R = 2

and R = 0.5 aperiodic system respectively. + and × label the
spectrum of the Rc1 = 0.2706... and Rc2 = 6.3104... fixed-points
of the two-cycle attractor, respectively.

malized measures,

ξi(q, L) =
µi(L)q∑
j [µj(L)]q

· (17)

Following the CJ approach the F (α) function is
given by

F (q) = − lim
N→∞

1
ln N

N∑
i=1

ξi(q, ε) ln[ξi(q, ε)], (18)

α(q) = − lim
N→∞

1
ln N

N∑
i=1

ξi(q, ε) ln[µi(q, ε)]. (19)

In Figures 6a and b we show the plots for both mod-
els comparing the F (α) spectra of the aperiodic and the
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Table 2. Domain of the F (α) spectra for the aperiodic and homogeneous systems for model 1. The numerical values obtained
by the scaling of αmin and αmax of the aperiodic systems were calculated for lattices with N = 10 to 22 and for q = ±50. The
finite size scaling of the average magnetization was performed for lattices with L = 2N , N = 10 to 22.

Method R = 1 R = 2 R = 0.5

analytic [20] αmin 0.8791464205 – –

scaling a αmin 0.87895(6E-5) 0.8793(9E-4) 0.876(E-3)

scaling a 1 − β/ν 0.87900(3E-5) 0.8794(9E-4) 0.879(E-3)

transfer matrix [9] 1 − β/ν 0.87915(E-5) 0.8791(E-4) 0.8794(E-4)

analytic [20] αmax 1.04604781... – –

scaling a αmax 1.03920(7E-5) 1.0467(6E-4) 1.0474(5E-4)

a present work.

Table 3. Domain of the F (α) spectra for the aperiodic and homogeneous systems for model 2. The numerical values obtained
by the scaling of αmin and αmax of the aperiodic systems were calculated for lattices with N = 6 to 15 and for q = ±40. The
finite size scaling of the average magnetization was performed for lattices with L = 3N , N = 6 to 15.

Method R = 1 R = 6.3104... R = 0.2706... R = 2.0 R = 0.5

analytic [20] αmin 0.8760357586... – – – –

scaling a αmin 0.8768(5E-4) 0.95(E-2) 0.94(E-2) 0.9314(7E-4) 0.9219(8E-4)

scaling a 1 − β/ν 0.8768(5E-4) 0.95(E-2) 0.94(E-2) 0.9301(6E-4) 0.9178(6E-4)

transfer matrix [9] 1 − β/ν 0.8760(E-4) 0.95481(E-5) 0.955(E-3) 0.9546(4E-4) 0.9525(3E-4)

analytic [20] αmax 1.068947633.. – – – –

scaling a αmax 1.0643(6E-4) 1.1660(5E-4) 1.162(5E-3) 1.166(5E-3) 1.160(5E-3)

a present work.

homogeneous system at criticality. Both curves have the
same maximum value (F (α)max=1) since the measure has
been arbitrarily assigned to the interval [0, 1], that is, to
the same fractal set (support) of dimension d = 1. There-
fore, one must focus our attention to the values of the
Hölder exponent α. The minimum and the maximum val-
ues of α reflect, respectively, how the measures of the most
concentrated and the most rarefied intervals scale with
the box width. For the homogeneous systems the domain
of the F (α) spectra can be analytically calculated. More-
over as was demonstrated in [20] there is a straightforward
relation between the Hölder exponent and the critical
exponents given by

α = d +
1
ν

(βα − β) (20)

where d is the fractal dimension of the support and βα is
the critical exponent associated with the average magne-
tization of the subset of sites whose the measure vanishes
with exponent α, as L → ∞. Since the most concentrated
measures of both models have finite values at the ther-
modynamic limit induced by the boundary conditions we
have βαmin = 0 and αmin = d − β/ν. Therefore αmin is
solely related with the exponents describing the critical
behavior of the whole system and should follows the rules
for the universality class of the systems. Moreover, for the
subset of sites where the measure behaves with the Hölder
exponent α = d, the local magnetization behaves with

the same critical exponent of the average magnetization
of whole lattice, that is, βα = β. This particular subset
should also follow the rules of the universality class, and
therefore the point (d, F (d)) on the F (α) function should
remains fixed when irrelevant geometric fluctuations are
considered.

From Figure 6b, it becomes clear that the aperiodic
systems with relevant geometric fluctuations belong to a
distinct class of universality regarding the homogeneous
system, as the F (α) function of the former is shifted to
higher values of α. Moreover, we notice two distinct F (α)
spectra, corresponding to distinct profiles with R = 1 and
R 6= 1. On the other hand, as displayed in Figure 6a, the
F (α) functions of model 1 with R = 0.5 and 2 suffer minor
changes due to finite size effects when compared with the
one for R = 1. To handle with such differences we refine
our calculations by doing a finite size scaling estimation of
the values of α and F (α) for higher |q|, and by proceeding
a finite size scaling estimation of the exponent φ governing
the average magnetization at the critical point m ∼ L−φ,
which by it turn is related with the critical exponents by
φ = β/ν.

In Tables 2 and 3, we present these estimations for
both models respectively, comparing with exact values
whenever is possible. We notice the slight difference when
the αmin of the aperiodic system of model 1 is compared
with the exact value for the homogeneous system, indi-
cating conservation of universality (see Tab. 2). However,
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Fig. 7. Scaling of the αmin of the F (α) function of model 2
for values of R = 1, R = 0.5, R = 2, Rc1 = 0.2706... and
Rc2 = 6.3104.... The corresponding exponents are given on
Table 3.

for model 2, qualitative differences are observed when the
αmin values of the aperiodic and the homogeneous models
are compared. In this latter case the values of αmin oscil-
lates as we go from N even to N odd lattices. As pointed
out in our former discussion, these oscillations are a mani-
festation of the fact that the profile oscillates between two
different patterns dictated by the properties of each of the
points of the cycle. In Figure 7 we present the scaling for
the αmin of the F (α) function of model 2 for some values
of the fluctuation parameter R. For Rc1 and Rc2 these
oscillations are clearly seen as we go from N even to N
odd lattices. For finite lattices and finite values of q, the
oscillations on the scaling plot introduce significant error
bars for the values of the corresponding exponents. How-
ever, as N goes to infinity, we expect that αmin converges
to a unique universal limit for any value of the fluctu-
ation parameter other than R = 1. In Table 3, we also
compare the values of αmin obtained within the present
approach with the ones deduced from the results for β/ν,
calculated using the transfer matrix approach developed
by one of us [9]. It is worth to mention that this latter
approach allows to work with higher values of N , ending
up with more accurate values for the exponents.

4 Summary and conclusions

We investigate the role of the geometric fluctuations on
the local magnetization and critical properties of the fer-
romagnetic Ising model when the coupling constants are
defined by deterministic aperiodic sequences. For the pur-
pose of comparison, two distinct models were considered:
Model 1 (model 2) was build with irrelevant (relevant) Fi-
bonacci like geometric fluctuations with respect to changes
in the critical properties. The models are defined on differ-

ent diamond hierarchical lattices but with then same frac-
tal dimension dF = 2. The phase diagram of both models
were obtained and carefully analyzed. The local magneti-
zation of both models was calculated by an exact recur-
rence procedure as function of the temperature but we
concentrate our analysis close to the critical point. When
the relevant (irrelevant) geometric fluctuation is concerned
the pattern of the local magnetization profile exhibit a
strong (weak) change of it symmetry as compared with
the one of the corresponding homogeneous system. For
the model 1, the self-similar pattern induced by the lattice
topology is predominant, as it occurs for the homogeneous
system.

However, for model 2, the pattern symmetry of the
homogeneous system is strongly affected by the one dic-
tated by aperiodic distribution of coupling constants and
the local magnetization profile resulting with a quite dif-
ferent distribution of singularities. This break of symme-
try is straightforwardly related with the change in crit-
ical properties, as revealed by the multifractal analysis
of the magnetization profiles at the criticality. The F (α)
functions of the model 1 is quite close to the one of the
corresponding homogeneous systems for all values of do-
main of the spectrum, reflecting the same critical behavior
of the latter. However, the domain of the F (α) functions
of the model 2 is shifted to higher values of α, with re-
spect to the one of the corresponding homogeneous sys-
tems, leading to change the universality class of the model
regarding the relative values of the ferromagnetic coupling
constants. The critical exponent associated with the mag-
netization of model 2 were calculated by means of the
F (α) function as well as by scaling the average magneti-
zation. The results are in good agreement with the ones
obtained through the thermodynamic functions calculated
using a quite different approach previously developed by
one of us. Therefore, we have demonstrated, by means of
exact numeric calculations of the local magnetization of
useful models, that as far as relevant deterministic geo-
metric fluctuations are concerned the resulting disorder
in the distribution of aperiodic ferromagnetic interactions
leads to a strong break of symmetry in the patterns of the
local magnetization following the change of universality
class.
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